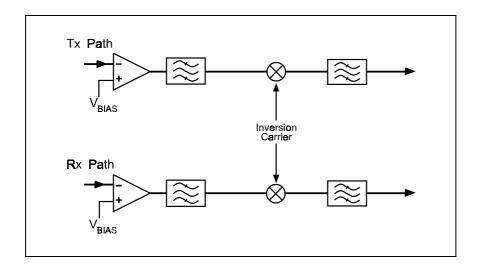


CML Semiconductor Products

Cordless Telephone Scrambler

FX128


D/128/1 October 1997

Provisional Information

Features

- Full-Duplex Audio Processing
- On-Chip Filters
- Carrier Rejection >55dB
- Uses IF (10.24MHz) Clock
- Requires No Extra Crystal

- Excellent Audio Quality
- Low Power Operation (3.0V)
- ECPA* Qualified Voice Protection
- Battery Powered Portability
- Cordless Telephones and Wireless PBX Applications

1.1 Brief Description

The FX128 is a full-duplex frequency inversion scrambler designed to provide secure conversations for 46/49 MHz cordless telephone users. The Rx and Tx audio paths consist of the following:

- 1. A switched-capacitor balanced modulator with high baseband and carrier rejection.
- 2. A 3.3kHz inversion carrier (injection tone).
- 3. A 3100Hz lowpass filter.
- 4. Input op-amps with externally adjustable gain.

The FX128 uses mixed signal CMOS switched-capacitor filter technology and operates from a single supply in the range of 3.0 to 5.5 volts. The inversion carrier's frequency and filter switching clock are generated on-chip using an external 10.24MHz or 3.58/3.6864 MHz crystal or clock input (selectable).

This device is available in 16-pin SOIC (FX128D4) and 16-pin plastic DIL (FX128P3) packages.

^{*}Electronics Communications Privacy Act (Title 18, US Code 2510 etc.).

CONTENTS

S	<u>ection</u>	<u>Page</u>
	1.1 Brief Description	. 1
	1.2 Block Diagram	. 3
	1.3 Signal List	. 4
	1.4 External Components	. 5
	1.5 Application	6
	1.6 Application Notes	6
	1.7 Performance Specification	7 7
	1.7.2 Packaging	IU

1.2 Block Diagram

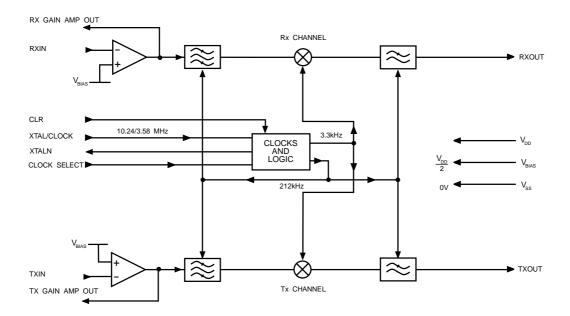
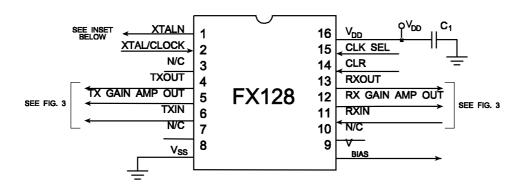
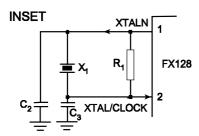


Figure 1 Block Diagram


1.3 **Signal List**


Package Signal Signal		I	Description				
Pin No.	n No. Name Type						
1	XTALN	O/P	This is the output of the clock oscillator inverter.				
2	XTAL/CLOCK	I/P	10.24MHz or 3.58/3.6864 MHz or an externally derived clock is injected at this pin. See Figure 2.				
3	-	N/C	No connection should be made to this pin.				
4	TXOUT	O/P	This is the analogue output of the transmit channel. It is internally biased at VDD/2.				
5	TX GAIN AMP OUT	O/P	This is the output pin of the transmit gain adjusting opamp. See Figure 3 for gain setting components.				
6	TXIN	I/P	This is the analogue signal input to the transmit channel. This input goes to a gain adjusting op-amp whose gain is set by external components. See Figure 3.				
7	-	N/C	No connection should be made to this pin.				
8	VSS	Power	Negative supply (GND)				
9	VBIAS	O/P	This is an internally generated bias voltage output (VDD/2)				
10	-	N/C	No connection should be made to this pin.				
11	RXIN	I/P	This is the analogue signal input to the receive channel. This input goes to a gain adjusting op-amp whose gain is set by external components. See Figure 3.				
12	RX GAIN AMP OUT	O/P	This is the output pin of the receive gain adjusting opamp. See Figure 3 for gain setting components.				
13	RXOUT	O/P	This is the analogue output of the receive channel. It is internally biased at VDD/2.				
14	CLR	I/P	A logic 1 on this input selects the invert mode. A logic 0 selects the clear (not inverted) mode.				
15	CLOCK SELECT	I/P	Selects either 10.24 or 3.58/3.6864 MHz clock frequency. A logic "1" selects 10.24MHz and a logic "0" selects 3.58/3.6864 MHz. This input is internally pulled high.				
16	VDD	Power	Positive supply of 3.0 to 5.5V.				

Notes: I/P O/P

Input Output No Connection N/C

1.4 External Components

Component	Value	Value		
X1	10.24MHz	3.58/3.6864 MHz		
R1	$1.0 { m M}\Omega$	$1.0 { m M}\Omega$		
C1	0.47µF	0.47µF		
C2	22.0pF	33.0pF		
C3	22.0pF	47.0pF		
Tolerance:	$R = \pm 10\%$	$C = \pm 20\%$		

Note: Xtal circuitry shown is in accordance with CML's Xtal Application Note.

Figure 2 Recommended External Components

1.5 Application

BASE 120pF **RXOUT** RXIN 100k CODE ___150pF HYBRID TRANSFORMER **FX128** 120pF TELEPHONE LINE CODE MODULATOR 150pF **TXOUT** TXIN

PORTABLE RXIN 120pF AMP DETECTOR 100k 110p 100k 110p 120pF 13 100k 13 100k 14 120pF 150pF 150p

Note: Components shown set a gain of 0dB

Figure 3 Block Diagram of a Typical Application of the FX128 (Cordless Phone)

1.6 Application Notes

Formulae for calculating the carrier frequency, upper cutoff frequency and lower cutoff frequency with clock select pin high are as follows:

Carrier Frequency = (3.2995kHz / 10.24MHz) * XTAL frequency Upper Cutoff Frequency = (2.800kHz / 10.24MHz) * XTAL frequency Lower Cutoff Frequency = (400Hz / 10.24MHz) * XTAL frequency

Formulae for calculating the carrier frequency, upper cutoff frequency and lower cutoff frequency with clock select pin low are as follows:

Carrier Frequency = (3.2995kHz / 3.415MHz) * XTAL frequency Upper Cutoff Frequency = (2.800kHz / 3.415MHz) * XTAL frequency Lower Cutoff Frequency = (400Hz / 3.415MHz) * XTAL frequency

1.7 Performance Specification

1.7.1 Electrical Performance

Absolute Maximum Ratings

Exceeding these maximum ratings can result in damage to the device.

Min	Max	Units
- 0.3	7.0	V
-0.3	$(V_{DD} + 0.3)$	V
-30	+30	mA
-20	+20	mA
	800	mW
	10	mW/°C
-55	+125	°C
-40	+85	°C
	- 0.3 -0.3 -30 -20	- 0.3 7.0 -0.3 (V _{DD} + 0.3) -30 +30 -20 +20 800 10 -55 +125

Operating Limits

Correct operation of the device outside these limits is not implied.

	Min.	Max.	Units
Supply (V _{DD -} V _{SS})	3.0	5.5	V
Operating Temperature	-40	+85	°C
Clock Frequency		10.24	MHz

Operating Characteristics

For the following conditions unless otherwise specified: $V_{DD} = 3.3V$ at Tamb = 25°C Clock Frequency = 10.24MHz Audio Level 0dB ref. at 1kHz = $(V_{DD} - 1)$ x 150vrms e.g. $V_{DD} = 3.3V$ 0dB = 345mVrms

	Notes	Min.	Тур.	Max.	Units
Static Values Supply Current		_	2.0	3.0	mA
очрру очнет			2.0	3.0	ША
Input Impedance		400			
Digital	2	100	-	-	kΩ
Amplifiers	2	1.0	10.0	-	$M\Omega$
Output Impedance (RXOUT, TXOUT)		-	1.0	-	$k\Omega$
Input Logic '1' Voltage	1	70%	_	_	V_{DD}
Input Logic '0' Voltage	1	-	-	30%	V_{DD}
Dynamic Values					
General					
Analog Signal Input Levels	_	-16.0	-	3	dB
Analog Output Noise	4	-	2.5	5.0	mVrms
Clear Mode					
Passband -3dB Cutoff Frequencies					
Low		-	-	300	Hz
High		3000	-	-	Hz
Passband Ripple (300-3000Hz)					
Rx Channel		0	-	3.6	dB
Tx Channel		0	-	2.9	dB
Passband Ripple (500-2750Hz)					
Rx Channel		0	-	2.2	dB
Tx Channel		0	-	2.0	dB
Filter Attenuation at 3.3kHz					
Rx and Tx Channel		-	30	-	dB
Filter Attenuation at 3.6kHz					
Rx and Tx Channel		-	45	-	dB
Passband Gain (@ 1kHz ref.)					
Rx and Tx Channel		-1.5	-	0.5	dB
Switched-Capacitor Filter Sampling		-	211.066	-	kHz
Carrier Frequency		-	3298	-	Hz

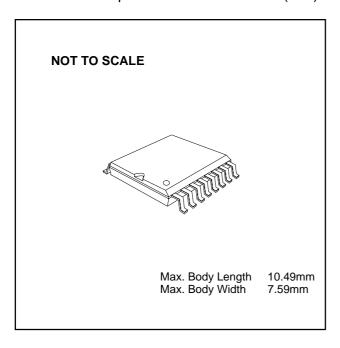
	Notes	Min.	Тур.	Max.	Units
Invert Mode Combined Tx and Rx Response					
Passband -3dB Cutoff Frequencies					
Low		-	-	400	Hz
High		2800	-	-	Hz
Passband Gain		-3	-	0.5	dB
Distortion (@ 1kHz)	3	-	1.75	2.75	%
Passband Gain (@ 1kHz ref.)	5	-2.5	-1.5	0	dB
Low Frequency Roll-off (<200Hz)		12	-	-	dB/oct.
Invert Mode Single Channel Response					
Unwanted Modulation Products	3				
Rx and Tx Channel		-	-40	-	dB
Carrier Breakthrough	3				
Rx and Tx Channel	-	-	-55	-	dB
Baseband Breakthrough	3				
Rx and Tx Channel		-	-40	-	dB

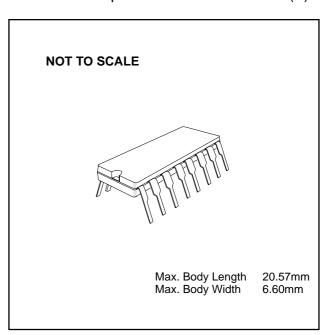
Operating Characteristics Notes:

- Batch sampled only.
- By characterisation only.
- Measured with Input Level 0dB.
- Short circuit Rx or Tx input, measure noise at corresponding analogue output, in 30kHz bandwidth.
- Op Amp gain 0dB. Clear mode only.

1.7.2 Package Outlines

The FX128 is available in the package styles outlined below. Mechanical package diagrams and specifications are detailed in Section 10 of this document.


Pin 1 identification marking is shown on the relevant diagram and pins on all package styles number anti-clockwise when viewed from the top.


Handling Precautions

The FX128 is a CMOS LSI circuit which includes input protection. However precautions should be taken to prevent static discharges which may cause damage.

FX128D4 16-pin Plastic S.O.I.C. (DW)

FX128P3 16-pin Plastic DIL (P)

Ordering Information

FX128D4 16-pin Plastic S.O.I.C. (DW)

FX128P3 16-pin Plastic DIL (P)

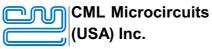
CML Product Data

In the process of creating a more global image, the three standard product semiconductor companies of CML Microsystems Plc (Consumer Microcircuits Limited (UK), MX-COM, Inc (USA) and CML Microcircuits (Singapore) Pte Ltd) have undergone name changes and, whilst maintaining their separate new names (CML Microcircuits (UK) Ltd, CML Microcircuits (USA) Inc and CML Microcircuits (Singapore) Pte Ltd), now operate under the single title CML Microcircuits.

These companies are all 100% owned operating companies of the CML Microsystems Plc Group and these changes are purely changes of name and do not change any underlying legal entities and hence will have no effect on any agreements or contacts currently in force.

CML Microcircuits Product Prefix Codes

Until the latter part of 1996, the differentiator between products manufactured and sold from MXCOM, Inc. and Consumer Microcircuits Limited were denoted by the prefixes MX and FX respectively. These products use the same silicon etc. and today still carry the same prefixes. In the latter part of 1996, both companies adopted the common prefix: CMX.


This notification is relevant product information to which it is attached.

Company contact information is as below:

COMMUNICATION SEMICONDUCTORS

Oval Park, Langford, Maldon, Essex, CM9 6WG, England Tel: +44 (0)1621 875500 Fax: +44 (0)1621 875600 uk.sales@cmlmicro.com www.cmlmicro.com

COMMUNICATION SEMICONDUCTORS

4800 Bethania Station Road, Winston-Salem, NC 27105, USA Tel: +1 336 744 5050,

0800 638 5577
Fax: +1 336 744 5054
us.sales@cmlmicro.com
www.cmlmicro.com

No 2 Kallang Pudding Road, 09-05/ 06 Mactech Industrial Building, Singapore 349307

Tel: +65 7450426 Fax: +65 7452917 sg.sales@cmlmicro.com www.cmlmicro.com